Gibbs free energy: It is the standard free energy which is equal to the difference in free energies of formation of the products and reactants both in their standard states. It is denoted by ΔGo. Relationship between Free Energy and Equilibrium Constant When equilibrium has not been attained, ...
The required equation is 2C + H2 ----------> C2H5 Standard heat of formation i.e. ΔH ...
The absorption of heat by the system tends to raise the energy of the system. The performance of work by the system, on the other hand, tends to lower the energy of the system because performance of work requires expenditure of energy. Therefore the change ...
Let us suppose that for an ideal gas, isothermal and adiabatic expansions have initial volume Vi and pressure be Pi to a common final volume Vf. If Piso and Padia are the final pressures, then: For isothermal expansion Pi Vi = Piso Vf And for adiabatic expansion, Pi ...
The absorption of heat by the system tends to raise the energy of the system. The performance of work by the system, on the other hand, tends to lower the energy of the system because performance of work requires expenditure of energy. Therefore the change ...
As we know that if the quantity of heat transferred from the surrounding to the system is q and work done in the process is w, then the change in internal energy, ΔU = q + w where heat absorbed ...
We can calculate the change in change in thermodynamic properties like q , w , ∆U , ∆H with the help of first law of thermodynamics. The expansion can be isothermal which can be reversible or irreversible or it can be adiabatic which can also ...
Temperature T = 37oC = 37 + 273 = 310 K Since the process is Isothermal, Therefore, ∆U=0 and ∆H = 0 (as for an isothermal expansion of an ideal gas ∆U=0 and ∆H = 0) As work done in reversible ...