Mean temperature of the mixture = (T1 + T2) / 2
Thus change in entropy is given by:
∆S = S2 – S1)
= mc (T1 + T2)/2∫ T1 (dT / T) – mc T2∫ T1 + T2)/2 (dT / T)
= mc ln (T1 + T2)/2 T1) –
mc ln (2 T2) / (T1 + T2)
= mc ln (T1 + T2)/2 T1) +
mc ln (T1 + T2) /2 T2)
= mc ln (T1 + T2) 2 / 4 T1 T2
= mc ln [(T1 + T2) / 2 (T1 T2) 1/2] 2
= 2 mc ln [(T1 + T2) / 2 (T1 T2) 1/2]
= 2 mc ln [(T1 + T2) / 2 ]/[ (T1 T2)1/2]
Hence, Resultant change of entropy of universe is:
2 mc ln [(T1 + T2) / 2]/[ (T1 T2)1/2]
The arithmetic mean (T1 + T2) / 2 is greater than the geometric mean (T1 T2) 1/2
Therefore, ln [(T1 + T2) / 2]/[ (T1 T2)1/2 ]
is always positive. Hence the entropy of the universe increases.